Republic of the Philippines # Tourism Infrastructure & Enterprise Zone Authority #### **GENERAL SPECIFICATIONS** #### I. GENERAL CONDITIONS The work to be undertaken shall include the furnishing of labor, materials, tools and equipment for the following: Project: Construction of the Mangrove Forest Trail and Conservation Center Location: Arteche, Eastern Samar #### A. Scope of Work The construction work must be executed strictly in accordance with the plans and specifications. The following principal items of work shall include but not limited to the following: - 1. GENERAL REQUIREMENTS - 2. MOBILIZATION/DEMOBILIZATION - 3. COFFERDAMMING - 4. CONSTRUCTION OF BOARDWALK - 5. CONSTRUCTION OF BOARDWALK WITH REST AREA - 6. CONSTRUCTION OF FOOT BRIDGE - 7. CONSTRUCTION OF GAZEBO The construction procedures shall be done in accordance with the DPWH Standard Specifications, and in full compliance with the approved plans and specifications. All items not specifically mentioned in the specifications or noted on the plans but which are obviously necessary for the completion of the work shall be included. #### II. GENERAL REQUIREMENTS # A. Occupational Safety and Health Program #### 1. General All security and health controls necessary for the execution of the Works such as but not limited to, medical facilities, manpower safety gadgets, sanitary arrangements, explosives and fuel, temporary fencing, safety precautions and fire prevention, shall be established and maintained by the Contractor at his own expense. The Contractor shall make himself responsible for all security and health controls and shall submit to the Engineer for his approval the organization and the regulations for these purposes. The Contractor's warehouse and storage area shall be secured against unauthorized entry in a manner appropriate to its contents. The Contractor shall also provide watchmen as required. # 3. Sanitary Arrangement The Contractor shall keep the Site in a clean and sanitary condition and shall provide and maintain sanitary facilities for the use of persons employed in the Works to the extent and in the manner and at such places as approved by the Engineer and by any local or other authorities concerned, and all persons connected with the Works shall be obliged to use these sanitary facilities. The Contractor shall also post notices and take such other precautions as may be necessary to keep the Site clean and well maintained. #### 4. Medical Facilities The Contractor shall make his own arrangement for treatment of casualties on the Site in conformity with the requirements of any duly constituted medical and sanitary authority. The Contractor shall provide first aid units/stations, and shall be responsible for and bear all cost in connection with the first aid services including the use of ambulance of injured or sick employees transporting to the hospital. Such first aid services shall be provided to the Employer, the Engineer, and to their employees at the site at no cost to them. ## 5. Dangerous Materials The Contractor shall convey, store and make use of all, petroleum, acetylene carbide, acetylene carbide of calcium and other similar dangerous materials provided by them for use in or on the Works in strict accordance with the provision of all Laws, Orders and Regulations that are in force at the Site or that may be issued from time to time by the Government or the Employer. # 6. Precaution For Safety The Contractor shall take all necessary precautions against risks, loss of life or of injury to any person employed on the Works or to employees of the Employer and the Engineer or to visitors or to persons having good and sufficient reasons to be about the Works, and shall properly safeguard the Works to the satisfaction of the Engineer. Where and when it is deemed necessary, the Contractor shall furnish lighting facilities, signs and sentry, and other safety facilities and services. The Contractor shall provide their Workers, Supervisors, Engineers, and Owner's and Engineer's representatives the necessary safety gadgets at the site such as: safety shoes, safety helmets, safety belts, gloves, goggles, gas or dust mask, and Uniforms, The Contractor shall furthermore take all necessary precautions against damage to the property of the Employer or of others located at or adjacent to the Site. The Contractor shall at all times comply with any accident prevention, regulations and any safety regulations of local or national authorities or that shall be prescribed by the Employer. The Contractor shall appoint a Safety Officer and hold periodical safety meetings with the Engineer and with his own supervisors and foremen. The Contractor shall report in writing within twenty-four (24) hours to the Engineer all accidents involving the death of and/or injury to any person, resulting from the Contractor's operation. #### 7. Fire Prevention The Contractor shall take every precaution to prevent fire occurring on or about the Site and shall provide firefighting equipment suitable and adequate in the opinion of the Engineer, for ready use in all structures, buildings or the Works under construction, including his residential quarters, labor camps and ancillary buildings. The Contractor shall maintain such equipment and such additional firefighting equipment as may be required, in good working condition until the Works are accepted by the Employer. The Contractor shall diligently fight any fire which occurs on the Site, wherever such fire may originate. In this regard, he shall employ all requisite equipment and manpower up to the limit of his equipment and manpower employed at the Site, including the equipment and manpower of his Subcontractors. # B. Traffic Management #### 1. General The Contractor shall implement an approved Traffic Management Plan. At least 7 days prior to commencing work on the Site, the Contractor shall submit to the Engineer for approval a detailed plan covering all aspects of traffic management for each stage of the Works. The submission shall include documentation evidencing approval by all relevant authorities. No work shall commence on any work stage until the Engineer has approved the plan for that stage. Upon the Engineer's approval, the Contractor shall immediately implement the plan and keep it in operation for the full duration of the relevant work stage. The Contractor shall be responsible at all times for the safety of the public on the Site and, should the Contractor fall to provide the necessary traffic management, the Engineer may arrange for others to carry out such work as he deems to be necessary. The Contractor shall be responsible for the cost of the necessary work and the Employer may recover this by deduction from any money due, or which may become due, to the Contractor under the Contract. ## 2. Traffic Arrangement The Contractor shall make provision for the safe movement of all road users at all times and shall ensure that all traffic control and road closure or diversion signposting work which is required shall comply with the requirements of the relevant authorities. The Contractor shall plan and implement the construction of the work such that public traffic may continue to pass safely along the affected roads at all times. Where the safe movement of road users may be affected, the Contractor shall ensure that all necessary traffic control and road closure or diversion signposting work is provided to the satisfaction of the Engineer and the relevant authorities. Where required, or where instructed, the Contractor shall furnish and station competent flagmen whose sole duties consist of directing the movement of traffic through or around the work. All necessary traffic safety and management measures shall be fully operational before the Contractor commences any work that affects public roads. #### 3. Compliance with Instructions The Contractor shall comply with any direction or instruction given by the Engineer or a relevant authority in respect of any traffic control proposal. The Engineer or a relevant authority may at any time instruct the Contractor to re-open any traffic lane or shoulder to traffic without delay, whether or not closed by prior agreement. The Engineer may order suspension, or cessation, of any activity that causes delay to traffic or threatens the safety of the public, notwithstanding that approval had previously been given to the traffic change. #### C. Mobilization & Demobilization Mobilization shall include transportation to the site of Contractor's plant, materials, equipment, employees, furnishings and temporary facilities. Mobilization, as provided in these Specifications, means preparatory work and operations, including, but not limited to, those necessary for the movement of necessary personnel, plant and equipment to the Site. Demobilization shall include dismantling and removal from the site of Contractor's plant, materials and equipment and all temporary facilities. It shall also include cleanup of the site after completion of the Contract Work as approved by the Engineer and transportation from the site of Contractor's employees. The Contractor shall furnish the Engineer with a resources schedule, showing in detail the sequence of proposed delivery to the Site of plant and equipment necessary to comply with the proposed construction program. The Contractor shall keep the Engineer informed of the arrival of plant and equipment on the Site. In accordance with the Conditions of Contract, the Contractor shall not remove construction plant and equipment from the Site without the approval of the Engineer #### III. EARTHWORKS # Item 803 - Structure Excavation #### A. Description This Item shall consist of the necessary excavation for foundation of buildings, culverts, underdrains, and other structures not otherwise provided for in the Specifications. Except as otherwise provided for pipe culverts, the backfilling of completed structures and the disposal of all excavated
surplus materials, shall be in accordance with the Plans and this Specification. This Item shall include necessary diversion of live streams, dewatering, pumping, draining, sheeting, bracing, and the necessary construction of cribs and cofferdams, and furnishing the materials therefore, and the subsequent removal of cribs and cofferdams and the placing of all necessary backfill. It shall also include the furnishing and placing of approved foundation fill material to replace unsuitable material encountered below the foundation elevation of structures. No allowance shall be made for classification of different types of material encountered. ## **B.** Construction Requirements # 1. Excavation ## General, All Structures The Contractor shall notify the Engineer sufficiently in advance at the beginning of any excavation so that cross-sectional elevations and measurements may be taken on the undisturbed ground. The natural ground adjacent to the structure shall not be disturbed without permission of the Engineer. Trenches or foundation pits for structures or structure footings shall be excavated to the lines and grades or elevations shown on the Plans or as staked by the Engineer. They shall be of sufficient size to permit the placing of structures or structure footings of the full width and length shown. The elevations of the bottoms of footings, as shown on the Plans, shall be considered as approximate only and the Engineer may order, in writing, such changes in dimensions or elevations of footings as may be deemed necessary, to secure a satisfactory foundation. Boulders, logs, and other objectionable materials encountered in excavation shall be removed. After each excavation is completed, the Contractor shall notify the Engineer to that effect and no footing, bedding material or pipe culvert shall be placed until the Engineer has approved the depth of excavation and the character of the foundation material. ## **Structures Other than Pipe Culverts** All rock or other hard foundation materials shall be cleaned of all loose materials, and cut to a firm surface, either level, stepped, or serrated as directed by the Engineer. All seams or crevices shall be cleaned and grouted. All loose and disintegrated rocks and thin strata shall be removed. When the footing is to rest on material other than rock, excavation to final grade shall not be made until just before the footing is to be placed. When the foundation material is soft or mucky or otherwise unsuitable, as determined by the Engineer, the Contractor shall remove the unsuitable material and backfill with approved granular material. This foundation fill shall be placed and compacted in 150 mm layers up to the foundation elevation. When foundation piles are used, the excavation of each pit shall be completed before the piles are driven and any placing of foundation fill shall be done after the piles are driven. After the driving is completed, all loose and displaced materials shall be removed, leaving a smooth, solid bed to receive the footing. # 2. Utilization of Excavated Materials All excavated materials, so far as suitable, shall be utilized as backfill or embankment. The surplus materials shall be disposed of in such manner as not to obstruct the stream or otherwise impair the efficiency or appearance of the structure. No excavated materials shall be deposited at any time so as to endanger the partly finished structure. #### 3. Cofferdams Suitable and practically watertight cofferdams shall be used wherever waterbearing strata are encountered above the elevation of the bottom of the excavation. If requested, the Contractor shall submit drawings showing his proposed method of cofferdam construction, as directed by the Engineer. Cofferdams or cribs for foundation construction shall in general, be carried well below the bottoms of the footings and shall be well braced and as nearly watertight as practicable. In general, the interior dimensions of cofferdams shall be such as to give sufficient clearance for the construction of forms and the inspection of their exteriors, and to permit pumping outside of the forms. Cofferdams or cribs which are tilted or moved laterally during the process of sinking shall be righted or enlarged so as to provide the necessary clearance. When conditions are encountered which, as determined by the Engineer, render it impracticable to dewater the foundation before placing the footing, the Engineer may require the construction of a concrete foundation seal of such dimensions as he may consider necessary, and of such thickness as to resist any possible uplift. The concrete for such seal shall be placed as shown on the Plans or directed by the Engineer. The foundation shall then be dewatered and the footing placed. When weighted cribs are employed and the mass is utilized to overcome partially the hydrostatic pressure acting against the bottom of the foundation seal, special anchorage such as dowels or keys shall be provided to transfer the entire mass of the crib to the foundation seal. When a foundation seal is placed under water, the cofferdams shall be vented or ported at low water level as directed. Cofferdams shall be constructed so as to protect green concrete against damage from sudden rising of the stream and to prevent damage to the foundation by erosion. No timber or bracing shall be left in cofferdams or cribs in such a way as to extend into substructure masonry, without written permission from the Engineer. Any pumping that may be permitted from the interior of any foundation enclosure shall be done in such a manner as to preclude the possibility of any portion of the concrete material being carried away. Any pumping required during the placing of concrete, or for a period of at least 24 h thereafter, shall be done from a suitable sump located outside the concrete forms. Pumping to dewater a sealed cofferdam shall not commence until the seal has set sufficiently to withstand the hydrostatic pressure. Unless otherwise provided, cofferdams or cribs, with all sheeting and bracing involved therewith, shall be removed by the Contractor after the completion of the substructure. Removal shall be effected in such manner as not to disturb or mar finished masonry. # Item 804 - Embankment # A. Description This Item shall consist of the construction of embankment in accordance with this Specification and in conformity with the lines, grades and dimensions shown on the Plans or established by the Engineer. # **B.** Material Requirements - 1. Suitable Material - a. Selected Borrow soil of such gradation that all particles will pass a sleve with 75 mm square openings and not more than 15 mass percent will pass the 0.075 mm (No. 200) sieve, as determined by AASHTO T 11, Standard Method of Test for Materials Finer Than 75-µm (No. 200) Sieve in Mineral Aggregates by Washing. The material shall have a plasticity index of not more than six (6) as determined by AASHTO T 90, Standard Method of Test for Determining the Plastic Limit and Plasticity Index of Soils and a liquid limit of not more than 30 as determined by AASHTO T 89, Standard Method of Test for Determining the Liquid Limit of Soils. - **b. Gravel fill** shall consist of crushed, partially crushed, or naturally occurring granular material. The abrasion loss as determined by AASHTO T 96, Standard Method of Test for Resistance to Degradation of Small-Size Coarse Aggregate by Abrasion and Impact in the Los Angeles Machine shall not exceed 40 mass percent. The gravel fill material grading requirements shall conform to Table 804.1. Table 804.1 Grading Requirements | Sieve Designation | Mass Percent Passing | | | |-------------------|-----------------------|-----------|--| | Standard, mm | Alternate US Standard | Grading A | | | 63.5 | 2 1/2" | 100 | | | 50 | 2" | 65 - 100 | | | 25.0 | 1" | 50 - 85 | | | 4.75 | No. 4 | 26 - 44 | | | 0.425 | No. 40 | 16 max | | | 0.075 | No. 200 | 9 max | | c. Rock fill material - shall be hard, sound and durable material, free from seams, cracks, and other defects tending to destroy its resistance to weather. Specific gravity of rock fill materials shall be above 2.40. #### 2. Unsuitable Material Materials that are not acceptable for use are the following: - a. Organic soils such as peat and muck. - b. Soils with liquid limit exceeding 80 and/or plasticity index exceeding 55. - c. Soils with a natural water content exceeding 100%. - d. Soils with very low natural density, 800 kg/m³ or lower. - e. Materials containing detrimental quantities of organic materials, such as grass, roots, sewerage, and other materials that cannot be properly compacted as determined by the Engineer. # C. Construction Requirements #### 1. General Embankment construction shall consist of constructing embankments, including preparation of the areas upon which they are to be placed; the construction of dikes within or adjacent to any structures; the placing and compacting of approved material within areas where unsuitable material has been removed; and the placing and compacting of embankment material in holes, pits, and other depressions within the area. Embankments and backfills shall contain no muck, peat, sod, roots or other deleterious matter. Rocks, broken concrete or other solid, bulky materials shall not be placed in embankment areas where piling is to be placed or driven. Where shown on the Plans or directed by the Engineer, the surface of the existing ground shall be compacted to a depth of 150 mm and to the specified requirements of this Item. Where provided on the Plans and Bill of Quantities the top portions of the roadbed in both cuts and embankments, as indicated, shall consist of selected borrow for topping from excavations. #### 2. Methods of Constructions Where there is evidence of discrepancies on the actual elevations and that shown on the Plans, a preconstruction survey referred to the datum plane used in the approved Plan shall be undertaken by the Contractor under
the control of the Engineer to serve as basis for the computation of the actual volume of the embankment materials. When embankment is to be placed and compacted on hillsides, or when new embankment is to be compacted against existing embankments, or when embankment is built ½ of the width at a time, the existing slopes that are steeper than 3:1 when measured at right angles to the roadway shall be continuously benched over those areas as the work is brought up in layers. Benching will be subject to the Engineer's approval and shall be of sufficient width to permit operation of placement and compaction equipment. Each horizontal cut shall begin at the intersection of the original ground and the vertical sides of the previous cuts. Material thus excavated shall be placed and compacted along with the embankment material in accordance with the procedure described in this Section. Unless shown otherwise on the Plans or Special Provisions, where an embankment of less than 1.2 m below subgrade is to be made, all sod and vegetable matter shall be removed from the surface upon which the embankment is to be placed, and the cleared surfaced shall be completely broken up by plowing, scarifying, or steeping to a minimum depth of 150 mm except as provided in Conservation of Topsoil. This area shall then be compacted as provided in Compaction. Sod not required to be removed shall be thoroughly disc harrowed or scarified before construction of embankment. Wherever a compacted embankment containing granular materials lies within 900 mm of the subgrade, such old embankment shall be scarified to a depth of at least 150 mm whenever directed by the Engineer. This scarified material shall then be compacted as provided in Compaction. When shoulder excavation is specified, the shoulders shall be excavated to the depth and width shown on the Plans. The shoulder material shall be removed without disturbing the adjacent existing base course material, and all excess excavated materials shall be disposed of as provided in Utilization of Excavated Materials. If necessary, the areas shall be compacted before being backfilled. Embankment of earth material shall be placed in horizontal layers not exceeding 200 mm, loose measurement, and shall be compacted as specified before the next layer is placed. However, thicker layer maybe placed if vibratory roller with high compacting effort is used provided that density requirement is attained and as approved by the Engineer. Trial section to this effect must be conducted and approved by the Engineer. Effective spreading equipment shall be used on each lift to obtain uniform thickness as determined in the trial section prior to compaction. As the compaction of each layer progresses, continuous leveling and manipulating will be required to assure uniform density. Water shall be added or removed, if necessary, in order to obtain the required density. Removal of water shall be accomplished through aeration by plowing, blading, discing, or other methods satisfactory to the Engineer. Where embankment is to be constructed across low swampy ground that will not support the mass of trucks or other hauling equipment, the lower part of the fill may be constructed by dumping successive loads in a uniformly distributed layer of a thickness not greater than necessary to support the hauling equipment while placing subsequent layers. Fill material shall be placed in a way it effectively displaces unsuitable material from within unstable area of the proposed embankment. When excavated material contains more than 25 mass percent of rock larger than 150 mm in greatest diameter and cannot be placed in layers of the thickness prescribed without crushing, pulverizing or further breaking down the pieces resulting from excavation methods, such materials may be placed on the embankment in layers not exceeding in thickness the approximate average size of the larger rocks, but not greater than 600 mm. Even though the thickness of layers is limited as provided above, the placing of individual rocks and boulders greater than 600 mm in diameter shall be permitted provided that when placed, they do not exceed 1,200 mm in height and provided they are carefully distributed, with the interstices filled with finer material to form a dense and compact mass. Each layer shall be leveled and smoothed with suitable leveling equipment and by distribution of spalls and finer fragments of earth. Lifts of material containing more than 25 mass percent of rock larger than 150 mm in greatest dimensions shall not be constructed above an elevation 300 mm below the finished subgrade. The balance of the embankment shall be composed of suitable material smoothed and placed in layers not exceeding 200 mm in loose thickness and compacted as specified for embankments. Dumping and rolling areas shall be kept separate, and no lift shall be covered by another until compaction complies with the requirements of Compaction. Hauling and leveling equipment shall be so routed and distributed over each layer of the fill in such a manner as to make use of compaction effort afforded thereby and to minimize rutting and uneven compaction. #### 3. Compaction #### a. Compaction Trials Before commencing the formation of embankments, the Contractor shall submit in writing to the Engineer for approval his proposals for the compaction of each type of fill material to be used in the works. The proposals shall include the relationship between the types of compaction equipment, the number of passes required and the method of adjusting moisture content. The Contractor shall carry out full scale compaction trials on areas not less than 10 m wide and 50 m long as required by the Engineer and using his proposed procedures or such amendments thereto as may be found necessary to satisfy the Engineer that all the specified requirements regarding compaction can be consistently achieved. The compaction equipment shall be equivalent or higher than the required capacity prescribed in the Contract. Compaction trials with the main types of fill material to be used in the works shall be completed before work with the corresponding materials shall be allowed to commence. When embankment dimension is less than 10 m wide and 50 m long, the Engineer may waive the construction of compaction trials. Throughout the periods when compaction of earthwork is in progress, the Contractor shall adhere to the compaction procedures found from compaction trials for each type of material being compacted, each type of compaction equipment employed and each degree of compaction specified. #### b. Earth The Contractor shall compact the material placed in all embankment layers and the material scarified to the designated depth below subgrade in cut sections, until a uniform density of not less than 95 mass percent of the maximum dry density determined by AASHTO T 99, Standard Method of Test for MoistureDensity Relations of Soils Using a 2.5 kg Rammer and a 305 mm Drop - Method C, is attained, at a moisture content determined by Engineer to be suitable for such density. The Engineer shall, during progress of the Work, make density tests of compacted material in accordance with AASHTO T 191, Standard Method of Test for Density of Soil in-Place by the Sand-Cone Method, AASHTO T 205, Soil - Field density test sets: Balloon density apparatus or other approved field density tests, including the use of properly calibrated nuclear testing devices. If, by such tests, the Engineer determines that the specified density and moisture conditions have not been attained, the Contractor shall perform additional work as may be necessary to attain the specified conditions. At least one group of three (3) in-situ density tests shall be carried out for each 500 m² of each layer of compacted fill. #### c. Gravel Fill Gravel fill shall be constructed below the original ground elevation. The maximum compacted thickness of any layer shall not exceed 150 mm. All subsequent layers shall be spread and compacted in a similar manner. Gravel fill shall be in accordance with the approved Plan and conform to the applicable requirements of earth embankment. # d. Broken Concrete Pieces of concrete not exceeding 20 cm in diameter can be mixed if approved by the Engineer. Any exposed rebar on broken concrete pieces shall be cut and disposed of properly. PEPD.QF.04 Page 9 of 38 #### e. Rock Density requirements will not apply to portions of embankments constructed of materials which cannot be tested in accordance with approved methods. Embankment materials containing rocks shall be deposited, spread and leveled the full width of the fill with sufficient earth or other fine material so deposited to fill the interstices to produce a dense compact embankment. In addition, one of the rollers, vibrators, or compactors shall compact the embankment full width with a minimum of three (3) complete passes for each layer of embankment. # 4. Protection of Structure If embankment can be deposited on one (1) side of adjoining structure, care shall be taken that the area adjacent to the structure shall not be compacted to the extent that it will cause damages against the structure. When embankment is to be placed on both sides of a concrete structure, operations shall be so conducted that the embankment is always at approximately the same elevation on both sides of the structure unless otherwise specified in the Plans. Embankment shall not be placed in areas where the materials will be submerged in water. The area shall be pumped dry and any mud or loose material shall be removed. #### IV. REINFORCED CONCRETE # Item 900 - Structural Concrete ## A. Description # 1. Scope This Item shall consist of furnishing, placing and finishing concrete in buildings and related structures, flood control and drainage, ports, and water supply structures in accordance with this Specification and conforming to the lines, grades, and dimension shown on the Plans. # 2. Classes and
Uses of Concrete Five classes of concrete are provided for in this item, namely: A, B, C, P and Seal. Each class shall be used in that part of the structure as called for on the Plans. The classes of concrete will generally be used as follows: Class A — All superstructures and substructures which include the important parts such as slabs, beams, girders, columns, arch ribs, box culverts, abutments, retaining walls, shearwalls, pedestal and footings. Class B — Pier shafts, pipe bedding, slab on fill, gravity walls (unreinforced or with only a small amount of reinforcement), and other miscellaneous concrete structures. **Class C** – Thin reinforced sections, railings, precast R.C. piles and cribbing and for filler in steel grid floors. Class P - Prestressed concrete structures and members. Seal - Concrete deposited in water # **B.** Material Requirements #### 1. Portland Cement Cement shall conform to the requirements of the following cited Specifications for the type specified or permitted: | Туре | Specification | |---------------------------------|---| | Portland
Cement | AASHTO M 85, Standard Specifications for
Portland Cement (ASTM C150, Standard
Specification for Portland Cement) | | Blended
Hydraulic
Cements | AASHTO M 240, Standard Specification for
Blended Hydraulic Cement (ASTM C595,
Standard
Specification for Blended Hydraulic Cement) | | Masonry
Cement | ASTM C91, Standard Specification for Masonry
Cement | #### 2. Concrete Aggregates Concrete aggregates shall conform to ASTM C33M, Standard Specification for Concrete Aggregates, and lightweight concrete aggregates shall conform to ASTM C330M, Standard Specification for Lightweight Aggregates except that aggregates failing to meet these specifications, but which have been shown by special test or actual service to produce concrete of adequate strength and durability may be used under Method 2 of Subsection Methods of Determining the Proportions of Concrete, when authorized by the Engineer in writing. Except as permitted elsewhere in this Subsection, the maximum size of the aggregate shall be or not larger than 1/5 of the narrowest dimensions between sides of forms of the member for which the concrete is to be used nor larger than 3/4 of the minimum clear spacing between individual reinforcing bars or bundles of bars or pre-tensioning strands. #### a. Fine Aggregates Fine aggregates shall consist of natural and crushed sand, stone screenings or other inert materials with similar characteristics, or combinations thereof, having hard, strong and durable particles. Fine aggregates from different sources of supply shall not be mixed or stored in the same pile nor used alternately in the same class of concrete without the written approval of the Engineer. It shall not contain more than three (3) mass percent of material passing the 0.075 mm (No. 200 sieve) by washing nor more than one (1) mass percent each of clay lumps or shale. The use of beach sand will not be allowed without the written approval of the Engineer. If the fine aggregate is subjected to five (5) cycles of the sodium sulfate soundness test in accordance with AASHTO T 104, Soundness of Aggregate by Use of Sodium Sulfate or Magnesium Sulfate and ASTM C88, Standard Test Method for Soundness of Aggregates by Use of Sodium Sulfate or Magnesium Sulfate, the weighted loss shall not exceed ten (10) mass percent. Fine aggregates shall be free from injurious amounts of organic impurities. If subjected to the colorimetric test for organic impurities and a color darker than the standard is produced, it shall be rejected. However, when tested for the effect of organic impurities on strength of mortar by AASHTO T 71, Standard Method of Test for Organic Impurities in Fine Aggregate on Strength of Mortar (ASTM C87, Standard Test Method for Effect of Organic Impurities in Fine Aggregate on Strength of Mortar) the fine aggregate may be used if the relative strength at 7 and 28 days is not less than 95%. The fine aggregate shall be well-graded and shall conform to Table 900.2. Table 900.2 Grading Requirements for Fine Aggregate | | 000 | |------------------------|----------------------| | Sieve Designation (mm) | Mass Percent Passing | | 9.50 | 100 | | 4.75 | 95 – 100 | | 2.36 | - | | 1.18 | 45 – 80 | | 0.60 | - | | 0.30 | 5 – 30 | | 0.15 | 0 – 10 | # b. Coarse Aggregates Coarse Aggregates shall consist of crushed stone, gravel, blast furnace slag, or other approved inert materials of similar characteristics, or combinations thereof, having hard, strong, durable pieces and free from any adherent coatings. It shall contain no more than one (1) mass percent of material passing the 0.075 mm comment sieve, not more than 0.25 mass percent of clay lumps, nor more than 3.5 mass percent of soft fragments. If the coarse aggregate is subjected to five (5) cycles of the sodium sulfate soundness test in accordance with AASHTO \top 104, Soundness of Aggregate by Use of Sodium Sulfate or Magnesium Sulfate and ASTM C88, Standard Test Method for Soundness of Aggregates by Use of Sodium Sulfate or Magnesium Sulfate, the weighted loss shall not exceed 12 mass percent. Coarse Aggregates shall have a mass percent of wear not exceeding 40 when tested by AASHTO T 96, Standard Method of Test for Resistance to Degradation of Small-Size Coarse Aggregate by Abrasion and Impact in the Los Angeles Machine (ASTM C131, Standard Test Method for Resistance to Degradation of Small-Size Coarse Aggregate by Abrasion and Impact in the Los Angeles Machine). If the slag is used, its density shall not be less than 1,120 kg/m³. Gradation shall conform to Table 900.3. Table 900.3 Grading Requirements for Coarse Aggregate | | Mass Percent Passing | | | | | |------------------------|----------------------|---------|----------|---------|------------| | Sieve Designation (mm) | Class A | Class B | Class C | Class P | Class Seal | | 63.00 | | | | | | | 50.00 | 100 | 100 | | | | | 37.50 | 95 – 100 | - | | | 100 | | 25.00 | - | 35 – 70 | | 100 | 95 – 100 | | 19.00 | 35 – 70 | _ | 100 | | - | | 12.50 | | 10 – 30 | 90 – 100 | | 25 – 60 | | 9.50 | 10 – 30 | - | 40 70 | 20 - 55 | - | | 4. 75 | 0-5 | 0-5 | 0 - 15* | 0-10* | 0 - 10* | Note: * The measured cement content shall be within plus (+) or minus (-) 2 mass percent of the design cement content. #### c. Aggregate Tests Samples of the fine and coarse aggregates to be used shall be selected by the Engineer for tests at least 30 days before the actual concreting operations shall begin. It shall be the responsibility of the Contractor to designate the source or sources of aggregates to give the Engineer sufficient time to obtain the necessary samples and submit them for testing. No aggregates shall be used unless official advice has been received that it has satisfactorily passed all tests, at which time written authority by the Engineer shall be given for its use. #### 3. Water Water used in mixing, curing or other designated application shall be reasonably clean and free of oil, salt, acid, alkali, grass or other substances injurious to the finished product. Water which is drinkable may be used without test. Where the source of water is shallow, the intake shall be so enclosed as to exclude silt, mud, grass or other foreign materials. If it contains quantities of substance that discolor it or make it smell or taste unusual or objectionable, or cause suspicion, it shall not be used unless service records of concrete made with it (or other information) indicated that it is not deleterious to the quality, shall be subject to the acceptance criteria as shown in Table 900.4 and Table 900.5 or as designated by the Engineer. Table 900.4 Acceptance Criteria for Water Supply | . danie boot i i toooptalito di itali | | |--|---------------------------------| | Physical Property | Limit | | Compressive strength, min. % control at 7 days | 90 | | Time of Setting deviation from control, h:min ^A | from 1:00 earlier to 1:30 later | Note: Acomparisons shall be based on fixed proportions for concrete or mortar mixtures. The control mixture shall be made with 100% potable or distilled water. The test mixture shall be made with the mixing water that is being evaluated. Table 900.5 Chemical Limitation for Water | Chemical Property | Limits (parts per
million, ppm), max. | Test Method | |--|--|-------------| | A. Chloride as Cl ⁽⁻¹⁾ 1. Prestressed concrete | 500 | ASTM C114 | | 2. Other reinforced concrete in moist environments or containing aluminum embedments or dissimilar metals or with stay-inplace | 1000 | ASTM C114 | | B. Sulfate as SO ₄ | 3000 | ASTM C114 | | C. Alkalies as (Na ₂ O + 0.658 K ₂ O) | 600 | ASTM C114 | | D. Total Solids by mass | 50000 | ASTM C1603 | Note: ASTM C114 - Standard Test Methods for Chemical Analysis of Hydraulic Cement ASTM C1603 - Standard Test Method for Measurement of Solids in Water Non-potable water will be tested in accordance with, and shall meet the suggested requirements of ASTM C1602M, Standard Specification for Mixing Water Used in the Production of Hydraulic Cement Concrete. #### 4. Metal Reinforcement Reinforcing steel bars shall conform to the requirements of Subsection 902.2, Material Requirements of Item 902, Reinforcing Steel. # 5. Admixtures Air-entraining admixtures, if used, shall conform to ASTM C260M, Standard Specification for Air — Entraining Admixtures for Concrete. Air-entraining admixture shall conform to the requirements of AASHTO M 154, Standard Method of Test for Time of Setting of Hydraulic Cement Paste by Gillmore Needles. Chemical Admixtures, if used, shall
conform to the requirements of ASTM C494M, Standard Specification for Chemical Admixtures for Concrete or AASHTO M 194, Standard Specification for Chemical Admixtures for Concrete. Fly Ash, if specified or permitted as a mineral admixture and not exceeding 20% partial replacement of Portland Cement in concrete mix shall conform to the requirements of ASTM C618, Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete. Chemical Admixture/s maybe added to the concrete mix to produce some desired modifications to the properties of concrete if necessary, but not as partial replacement of cement. If specified, monofilament polypropylene synthetic fibrin fibers, which are used as admixture to prevent the formation of temperature/shrinkage cracks and increase impact resistance of concrete slabs shall be applied in the dosage rate recommended by its manufacturer. #### 6. Storage of Cement and Aggregates All cement shall be stored immediately upon delivery at the site in a weatherproof building which will protect the cement from dampness. The floor shall be raised from the ground. The buildings shall be placed in locations approved by the Engineer. Provisions for storage shall be ample, and the shipments of cement as received shall be separately stored in such a manner as to allow the earliest deliveries to be used first and to provide easy access for identification and inspection of each shipment. Storage buildings shall have capacity for storage of a sufficient quantity of cement to allow sampling at least 12 days before the cement is to be used. For a storage period of less than 60 days, stack the bags no higher than 14 layers, and for longer periods, no higher than seven (7) layers. As an additional precaution the oldest cement shall be used first. Bulk cement, if used, shall be transferred to elevated air tight and weatherproof bins. Stored cement shall meet the test requirements at any time after storage when retest is ordered by the Engineer. At the time of use, all cement shall be free flowing and free of lumps. The handling and storing of concrete aggregates shall be such as to prevent segregation or the inclusion of foreign materials. The Engineer may require that aggregates be stored on separate platforms at satisfactory locations. In order to secure greater uniformity of concrete mix, the Engineer may require that the coarse aggregate be separated into two (2) or more sizes. Different sizes of aggregate shall be stored in separate bins or in separate stockpiles sufficiently removed from each other to prevent the material at the edges of the piles from becoming intermixed. # 7. Curing Materials Curing materials shall conform to the following requirements as specified; - a. Burlap cloth AASHTO M 182, Standard Specification for Burlap Cloth Made from Jute or Kenaf and Cotton Mats - b. Liquid membrane forming compounds ASTM C309, Standard Specification for Liquid Membrane-Forming Compounds for Curing Concrete - c. Sheeting (film) materials AASHTO M 171, Standard Specification for Sheet Materials for Curing Concrete # 8. Expansion Joint Materials Expansion joint materials shall be: - a. Preformed Sponge Rubber and Cork, conforming to AASHTO M 153, Standard Specification for Preformed Sponge Rubber and Cork Expansion Joint Fillers for Concrete Paving and Structural Construction (ASTM D1752, Standard Specification for Preformed Sponge Rubber Cork and Recycled PVC Expansion Joint Fillers for Concrete Paving and Structural Construction) - b. Hot-Poured Elastic Type, conforming to ASTM D6690, Standard Specification for Joint and Crack Sealants, Hot-Applied, for Concrete and Asphalt Pavement. - c. Preformed Fillers, conforming to AASHTO M 213, Standard Specification for Preformed Expansion Joint Fillers for Concrete Paving and Structural Construction (Non-extruding and Resilient Bituminous Types), ASTM D994M, Standard Specification for Preformed Expansion Joint Filler for Concrete (Bituminous Type) # C. Construction Requirements The notation used in these regulations is defined as follows: fc' = compressive strength of concrete # 1. Concrete Quality All Plans submitted for approval or used for any project shall clearly show the specified strength, fc', of concrete of the specified age for which each part of the structure was designed. Concrete that will be exposed to sulfate containing or other chemically aggressive solutions shall be proportioned in accordance with "Recommended Practice for Selecting Proportions for Concrete (ACI 613)" and Recommended Practice for Selecting Proportions for Structural Lightweight Concrete (ACI 613A)." # 2. Methods of Determining the Proportions of Concrete The determination of the proportions of cement, aggregate, and water to attain the required strengths shall be made by one of the following methods: # Method 1. Without preliminary test Where preliminary test data on the materials to be used in the concrete have not been obtained, the water-cement ratio for a given strength of concrete shall not exceed the values shown in Table 900.6. When strengths in excess of 27.58 MPa are required or when lightweight aggregates or admixtures (other than those exclusively for the purpose of air entraining) are used, the required water-cement ratio shall be determined in accordance with Method 2. # Method 2. For combination of materials previously evaluated or to be established by trial mixtures. Water-cement ratios for strengths greater than that shown in Table 900.6 may be used provided that the relationship between strength and water-cement ratio for the materials to be used has been previously established by reliable test data and the resulting concrete satisfies the requirements of concrete quality. Where previous data are not available. Concrete trial mixtures having proportions and consistency suitable for the work shall be made using at least three (3) different water cement ratios (or cement content in the case of lightweight aggregates) which will produce a range of strengths encompassing those required for the work. For each water-cement ratio (or cement content) at least three (3) specimens for each age to be tested shall be made, cured and tested for strength in accordance with ASTM C39M, Standard Test Method for Compressive Strength of Cylindrical Concrete Specimen and ASTM C192, Standard Practice for Making & Curing Concrete Test Specimens in the Laboratory. The strength test shall be made at 7, 14 and 28 days at which the concrete is to receive load, as indicated on the Plans. A graph shall be established showing the relationship between water-cement ratio (or cement content) and compressive strength. The maximum permissible water-cement ratio for the concrete to be used in the structure shall be that shown by the curve to produce an average strength to satisfy the requirements of the strength test of concrete. Where different materials are to be used for different portions of the work, each combination shall be evaluated separately. Table 900.6 Maximum Permissible Water-Cement Ratios for Concrete (Method No. 1) | Specified | Maximum Permissible water-cement ratio | | | | | | |--|--|-----------------------------|--------------------------------------|--------------------------------|--|--| | compressive
strength at 28
days, MPa | Non-air-entr | ained concrete | Air-entrained concrete | | | | | | Liters per 40
kg bag of
cement | Absolute ratio
by weight | Liters per 40
kg bag of
cement | Absolute
ratio by
weight | | | | 17.24 | 25.77 | 0.642 | 22.22 | 0.554 | | | | 20.70 | 23.11 | 0.576 | 18. 6 6 | 0.465 | | | | 24.13 | 20.44 | 0.510 | 15.99 | 0.399 | | | | 27.58 | 17.77 | 0.443 | 14.22 | 0.354 | | | # 3. Concrete Proportions and Consistency The proportions of aggregates to cement for any concrete shall be such as to produce a mixture which will work readily into the corners and angles of the form and around reinforcement with the method of placing employed on the work, but without permitting the materials to segregate or excess free water to collect on the surface. The methods of measuring concrete materials shall be such that the proportions can be accurately controlled and easily checked at any time during the work. # 4. Sampling and Testing of Structural Concrete As work progresses, at least one (1) sample consisting of three (3) concrete cylinder test specimens, 150 mm x 300 mm, shall be taken from each 75 m³ of each class of concrete or fraction thereof placed each day. Samples from which compression test specimens are molded shall be secured in accordance with ASTM C172M, Standard Practice for Sampling Freshly Mixed Concrete. Specimens made to check the adequacy of the proportions for strength of concrete or as a basis for acceptance of concrete shall be made and laboratory-cured in accordance with ASTM C31M, Standard Practice for Making and Curing Concrete Test Specimen in the Field. Additional test specimens cured entirely under field conditions may be required by the Engineer to check the adequacy of curing and protection of the concrete. Strength tests shall be made in accordance with ASTM C39M, Standard Test Method for Compressive Strength of Cylindrical Concrete Specimen. Compliance with the requirements of this Subsection shall be determined in accordance with the following standard methods of AASHTO: | Sampling of fresh concrete | ; | AASHTO R 60, Standard Practice for
Sampling Freshly Mixed Concrete | |--|---|---| | Weight per cubic meter and air content (gravimetric) of concrete | | AASHTO T 121M, Standard Method of
Test for Density (Unit Weight), Yield,
and Air Content (Gravimetric) of
Concrete | | Slump of
Portland Cement
Concrete | ; | AASHTO T 119M, Standard Method of
Test for Slump of Hydraulic Cement
Concrete | Tests for strength shall be made in accordance with the following: | Making and curing of : concrete compressive specimen in the field | AASHTO T 23, Standard Method of Test
for Making and Curing Concrete Test
Specimens in the Field (ASTM C31,
Standard Practice for Making and Curing
Concrete Test Specimens in the Field) | |---|---| | Compressive strength of : molded concrete Cylinders | AASHTO T 22, Standard Method of Test
for Compressive Strength of Cylindrical
Concrete Specimens (ASTM C39M,
Standard Test Method for Compressive
Strength of Cylindrical Concrete
Specimens) | # 5. Proportioning and Strength of Structural Concrete The concrete materials shall be proportioned in accordance with the requirements for each class of concrete as specified in Table 900.7, using the absolute volume method as outlined in the American Concrete Institute (ACI) Standard 211.1, Recommended Practice for Selecting Proportions for Normal and Heavyweight Concrete. Other methods of proportioning may be employed in the mix design with prior approval of the Engineer. A change in the source of materials during the progress of work shall necessitate a new mix design. The strength requirements for each class of concrete shall be as specified in Table 900.7. Table 900.7 Composition and Strength of Concrete for Use in Structures | Class of
Concrete | Minimum
Cement
Content
Per m ³
40kg/
(bag**) | Maximum
Water /
Cement
Ratio
(kg/kg) | Consistency
Range in
Slump
(mm) | Designated Size of Coarse Aggregate Square Opening Std. mm | Minimum Compressive Strength of 150 mm x 300 mm Concrete Cylinder Specimen at 28 days, MN/m² | |----------------------|--|--|--|--|--| | А | 364
(9.1 bags) | 0.53 | 50 – 100 | 37.50 – 4.75 | 20.7 | | В | 320
(8 bags) | 0.58 | 50 100 | 50.00 - 4.75 | 16.5 | | С | 380
(9.5 bags) | 0.55 | 50 – 100 | 12.50 – 4.75 | 20.7 | | Р | 440
(11 bags) | 0.49 | 100 max. | 19.00 -4.75 | 37.7 | | Seal | 380
(9.5 bags) | 0.58 | 100 - 200 | 25.00 4.75 | 20.7 | Note: * The measured cement content shall be within plus or minus 2 mass percent of the design cement content. #### 6. Consistency Concrete shall have a consistency such that it will be workable in the required position and will flow around the reinforcing steel but individual particles of the coarse aggregates, when isolated, shall show a coating of mortar containing its proportionate amount of sand. The consistency of concrete shall be gauged by the ability of the equipment to properly place it and not by the difficulty in mixing and transporting concrete mix. The quantity of mixing water, which shall be determined by the Engineer and shall not be varied without his consent. Concrete as dry as it is practical to place with the equipment specified shall be used. #### 7. Strength Test of Concrete As basis of acceptance, strength test shall generally be made with the frequency of not less than one (1) test [three (3) specimens] for each 75 m³. Each test shall be made from a separate batch. One each day concrete is delivered, at least one (1) strength test shall be made for each class of concrete. The age for strength tests shall be 28 days or, when specified in the Plan, the earlier age at which the concrete is to receive its full load or maximum stress. Additional test may be made at earlier ages to obtain advance information on the adequacy of strength development where age-strength relationships have been established for the materials and proportions used. For structures designed in accordance with the ultimate strength design method, and for prestressed structures the average of any three (3) consecutive strength test of the laboratory cured specimens representing each class of concrete shall be equal to or greater than the specified compressive strength, fc' and not more than 10% of the strength tests shall have values less than the specified strength. ^{**} Based on 40 kg/bag When the laboratory-cured specimens failed to conform to the requirements for strength, the Engineer shall have the right to order changes in the concrete sufficient to requirements. If the cured specimen had attained the intended minimum strength requirement, the removal of forms and falseworks may take place and shall conform to the requirements of Item 903, Formworks and Falseworks. When in the opinion of the Engineer, the strengths of the jobcured specimens may not likely be achieved, the Contractor may be required to improve the procedures for protecting and curing the concrete specimen, or when test of field-cured cylinders indicate deficiencies in protection and curing, the Engineer may require test in accordance with ASTM C42M, Standard Test Method for Obtaining and Testing Drilled Cores and Sawed Beams of Concrete or order load tests as outlined in the load tests of structures for that portion of the structure where the questionable concrete has been placed. ## 8. Batching Measuring and batching of materials shall be done at a batching plant. #### a. Portland Cement Either sacked or bulk cement may be used. No fraction of a sack of cement shall be used in a batch of concrete unless the cement is weighed. All bulk cement shall be weighed on an approved weighing device. The bulk cement weighing hopper shall be properly sealed and vented to preclude dusting operation. The discharge chute shall not be suspended from the weighing hopper and shall be so arranged that cement will neither be lodged in it nor leak from it. Accuracy of batching shall be within plus (+) or minus (-) one (1) mass percent. #### b. Water Water may be measured either by volume or by weight. The accuracy of measuring the water shall be within a range of error of not more than 1%. # c. Aggregates Stockpiling of aggregates shall be in accordance with Subsection 900.2.6, Storage of Cement and Aggregate. All aggregates whether produced or handled by hydraulic methods or washed, shall be stockpiled or binned for draining for at least 12 hours prior to batching. Shipment requiring more than 12 hours will be accepted as adequate binning only if the car bodies permit free drainage. If the aggregates contain high or non-uniform moisture content, storage or stockpile period in excess of 12 hours may be required by the Engineer. Batching shall be conducted as to result in a two (2) mass percent maximum tolerance for the required materials. #### d. Bins and Scales The batching plant shall include separate bins for bulk cement, fine aggregate and for each size of coarse aggregate, a weighing hopper, and scales capable of determining accurately the mass of each component of the batch. Scales shall be accurate to 0.5% throughout the range used. ## e. Batching When batches are hauled to the mixer, bulk cement shall be transported either in waterproof compartments or between the fine and coarse aggregate. When cement is placed in contact with moist aggregates, batches will be rejected unless mixed within one and 1.5 h of such contact. Sacked cement may be transported on top of the aggregates. PEPD,QF.04 Page 19 of 38 Batches shall be delivered to the mixer separate and intact. Each batch shall be dumped cleanly into the mixer without loss, and, when more than one (1) batch is carried on the truck, without spilling of material from one (1) batch compartment into another. #### f. Admixtures The Contractor shall follow an approved procedure for adding the specified amount of admixture to each batch and will be responsible for its uniform operation during the progress of the work. He shall provide separate scales for the admixtures which are to be proportioned by weight, and accurate measures for those to be proportioned by volume. Admixtures shall be measured into the mixer with an accuracy of plus or minus 3%. The use of Calcium Chloride (CaCl₂) as an admixture will not be permitted. # 9. Mixing and Delivery Concrete may be mixed at the construction site, at a central point or by a combination of central point and truck mixing or by a combination of central point mixing and truck agitating. Mixing and delivery of concrete shall be in accordance with the appropriate requirements of AASHTO M 157, Standard Specification for Ready-Mixed Concrete except as modified in the following paragraphs of this Subsection, for truck mixing or a combination of central point and truck mixing or truck agitating. Delivery of concrete shall be regulated so that placing is at a continuous rate unless delayed by the placing operations. The intervals between deliveries of batches shall not be so great as to allow the concrete in place to harden partially, and in no case, shall such an interval exceed 30 min. Volumetric measurement shall be used only if by weight batching plant is located more than 1 h travel from the project site. Concrete mixing, by chute is allowed provided that a weighing scales for determining the batch weight will be used. For batch mixing at the construction site or at a central point, a batch mixer of an approved type shall be used. Mixer having a rated capacity of less than a one-bag batch shall not be used. The volume of concrete mixed per batch shall not exceed the mixer's nominal capacity as shown on the manufacturer's standard rating plate on the mixer except that an overload
up to 10% above the mixer's nominal capacity may be permitted, provided concrete test data for strength, segregation, and uniform consistency are satisfactory and provided no spillage of concrete takes place. The batch shall be so charge into the drum that a portion of the water shall enter in advance of the cement and aggregates. The flow of water shall be uniform and all water shall be in the drum by the end of the first 15 s of the mixing period. Mixing time shall be measured from the time all materials, except water, are in the drum. Mixing time shall not be less than 60 s for mixers having a capacity of 1.5 m³ or less. For mixers having a capacity greater than 1.5 m³, the mixing time shall not be less than 90 s. If timing starts, the instant skip reaches its maximum raised position, 4 s shall be added to the specified mixing time. Mixing time ends when the discharge chute opens. The mixer shall be operated at the drum speed as shown on the manufacturer's name plate on the mixer. Any concrete mixed less than the specified time shall be discarded and disposed of by the Contractor at his own expense. The timing device on stationary mixers shall be equipped with a bell or other suitable warning device adjusted to give a clearly audible signal each time the lock is released. In case of failure of the timing device, the Contractor will be permitted to continue operations while it is being repaired, provided he furnishes an approved timepiece equipped with minute and second hands. If the timing device is not placed in good working order within 24 h, further use of the mixer will be prohibited until repairs are made. Retempering concrete will not be permitted. Admixtures for increasing the workability, for retarding the set, or for accelerating the set or improving the pumping characteristics of the concrete will be permitted only when specifically provided for in the Contract, or authorized in writing by the Engineer. #### Mixing Concrete: General All concrete batching plant prior to use shall be accredited by the DPWHBureau of Research and Standards. #### a. Mixing Concrete at Site Concrete mixers may be of the revolving drum or the revolving blade type and the mixing drum or blades shall be operated uniformly at the mixing speed recommended by the manufacturer. The pick-up and throw-over blades of mixers shall be restored or replaced when any part or section is worn 20 mm or more below the original height of the manufacturer's design. Mixers and agitators which have an accumulation of hard concrete or mortar shall not be used. When bulk cement is used and volume of the batch is 0.5 m³ or more, the scale and weigh hopper for Portland cement shall be separated and distinct from the aggregate hopper or hoppers. The discharge mechanism of the bulk cement weigh hopper shall be interlocked against opening before the full amount of cement is in the hopper. The discharging mechanism shall also be interlocked against opening when the amount of cement in the hopper is underweight by more than one (1) mass percent or overweight by more than three (3) mass percent of the amount specified. When the aggregate contains more water than the quantity necessary to produce a saturated surface dry condition, representative samples shall be taken and the moisture content determined for each kind of aggregate. The batch shall be so charged into the mixer that some water will enter in advance of cement and aggregate. All water shall be in the drum by the end of the first quarter of the specified mixing time. Cement shall be batched and charged into the mixer so that it will not result in loss of cement due to the effect of wind, or in accumulation of cement on surface of conveyors or hoppers, or in other conditions which reduce or vary the required quantity of cement in the concrete mixture. The entire content of a batch mixer shall be removed from the drum before materials for a succeeding batch are placed therein. The materials composing a batch except water shall be deposited simultaneously into the mixer. All concrete shall be mixed for a period of not less than 90 s after all materials, including water, are in the mixer. During the period of mixing, the mixer shall operate at the speed for which it has been designed. Mixers shall be operated with an automatic timing device that can be locked by the Engineer. The time device and discharge mechanics shall be so interlocked that during normal operation no part of the batch will be charged until the specified mixing time has elapsed. PEPD.QF,04 Page 21 of 38 The first batch of concrete materials placed in the mixer shall contain a sufficient excess of cement, sand, and water to coat inside of the drum without reducing the required mortar content of the mix. When mixing is to cease for a period of 1 hour or more, the mixer shall be thoroughly cleaned. #### b. Mixing Concrete at Central Plant Mixing at central plant shall conform to the requirements for mixing concrete at site. #### c. Mixing Concrete In Truck Truck mixers, unless otherwise authorized by the Engineer, shall be of the revolving drum type, water-tight, and so constructed that the concrete can be mixed to insure a uniform distribution of materials throughout the mass. All solid materials for the concrete shall be accurately measured and charged into the drum at the proportioning plant. Except as subsequently provided, the truck mixer shall be equipped with a device by which the quantity of water added can be readily verified. The mixing water may be added directly to the batch, in which case a tank is not required. Truck mixers may be required to be provided with a means of which the mixing time can be readily verified by the Engineer. The maximum size of batch in truck mixers shall not exceed the minimum rated capacity of the mixer as stated by the manufacturer and stamped in metal on the mixer. Truck mixing, shall, unless otherwise directed be continued for not less than 100 revolutions after all ingredients, including water, are in the drum. The mixing speed shall not be less than 4 rpm, nor more than 6 rpm. Mixing shall begin within 30 min after the cement has been added either to the water or aggregate, but when cement is charged into a mixer drum containing water or surface wet aggregate and when the temperature is above 32 °C, this limit shall be reduced to 15 min. The limitation in time between the introduction of the cement to the aggregate and the beginning of the mixing may be waived when, in the judgement of the Engineer, the aggregate is sufficiently free from moisture, so that there will be no harmful effects on the cement. When a truck mixer is used for transportation, the mixing time specified herein at a stationary mixer may be reduced to 30 s and the mixing completed in a truck mixer. The mixing time in the truck mixer shall be as specified for truck mixing. ## d. Transporting and Delivery of Mixed Concrete Mixed concrete may only be transported to the delivery point in truck agitators or truck mixers operating at the speed designated by the manufacturers of the equipment as agitating speed, or in non-agitating hauling equipment, provided the consistency and workability of the mixed concrete upon discharge at the delivery point is suitable point for adequate placement and consolidation in place. Truck agitators shall be loaded not to exceed the manufacturer's guaranteed capacity. They shall maintain the mixed concrete in a thoroughly mixed and uniform mass during hauling. No additional mixing water shall be incorporated into the concrete during hauling or after arrival at the delivery point. The rate of discharge of mixed concrete from truck mixers or agitators shall be controlled by the speed of rotation of the drum in the discharge direction with the discharge gate fully open. When a truck mixer or agitator is used for transporting concrete to the delivery point, discharge shall be completed within 1 h, or before 250 revolutions of the drum or blades, whichever comes first, after the introduction of the cement to the aggregates. Under conditions contributing to quick stiffening of the concrete or when the temperature of the concrete is 30°C, or above, a time less than 1 h will be required. The maximum temperature of concrete produced with heated aggregates, heated water, or both, shall at no time during its production or transportation exceed 32°C. The Contractor shall have sufficient plant capacity and transportation apparatus to insure continuous delivery at the rate required. The rate of delivery of concrete during concreting operations shall be such as to provide for the proper handling, placing and finishing of the concrete. The rate shall be such that the interval between batches shall not exceed 20 min. The methods of delivering and handling the concrete shall be such as that will facilitate placing of the minimum handling. #### 10. Handling and Placing Concrete: General Concrete shall not be placed until forms and reinforcing steel have been checked and approved by the Engineer. If lean concrete is required in the Plan or as directed by the Engineer prior to placing of reinforcing steel bar, the lean concrete should have a minimum compressive strength of 13.8 MPa. In preparation for the placing of concrete, all sawdust, chips and other construction debris and extraneous matter shall be removed from inside the formwork. Struts, stays and braces, serving temporarily to hold the forms in correct shape and alignment, pending the placing of concrete at their locations, shall be removed when the concrete placing has reached an elevation rendering their service unnecessary. These temporary members shall be entirely removed from the forms and not buried in the concrete. No concrete shall be used which does not reach its final position in the forms within the time stipulated under "Time of Hauling and Placing Mixed Concrete". Concrete shall be placed so as to avoid segregation of the materials and
the displacement of the reinforcement. The use of long troughs, chutes, and pipes for conveying concrete to the forms shall be permitted only on written authorization of the Engineer. The Engineer shall reject the use of the equipment for concrete transportation that will allow segregation, loss of fine materials, or in any other way will have a deteriorating effect on the concrete quality. Open troughs and chutes shall be of metal lined; where steep slopes are required, the chutes shall be equipped with baffles or be in short lengths that reverse the direction of movement to avoid segregation. All chutes, troughs and pipes shall be kept clean and free from coatings of hardened concrete by thoroughly flushing with water after each run. Water used for flushing shall be discharged clear of the structure. When placing operations would involve dropping the concrete more than 1.5 m, concrete shall be conveyed through sheet metal or approved pipes. As far as practicable, the pipes shall be kept full of concrete during placing and their lower end shall be kept buried in the newly placed concrete. After initial set of the concrete, the forms shall not be jarred and no strain shall be placed on the ends of projecting reinforcement bars. The concrete shall be placed as nearly as possible to its final position and the use of vibrators for moving of the mass of fresh concrete shall not be permitted. ## a. Placing Concrete by Pneumatic Means The equipment shall be so arranged that vibration will not damage freshly placed concrete. The capacity of equipment shall be 0.30 to 1.00 m³. Where concrete is conveyed and placed by pneumatic means, the equipment shall be suitable in kind and adequate in capacity for the work. The machine shall be located as close as practicable to the work. The discharge lines shall be horizontal or inclined upwards from the machine. The discharge end of the line shall not be more than 3 m from the point of deposit. At the conclusion of placing the concrete, the entire equipment shall be thoroughly cleaned. #### b. Placing of Concrete by Pumping The equipment shall be so arranged that vibration will not damage freshly placed concrete. The discharge capacity of the equipment shall be 1.5 to 10.0 m³/h. The minimum pressure capacity of the equipment shall be 0.60 MPa. Where concrete is conveyed and placed by mechanically applied pressure the equipment shall be suitable in kind and adequate in capacity for the work. The operation of the pump shall be such that a continuous stream of concrete without air pockets is produced. When pumping is completed, the concrete remaining in the pipeline, if it is to be used, shall be ejected in such a manner that there will be no contamination of the concrete or separation of the ingredients. After this operation, the entire equipment shall be thoroughly cleaned. #### c. Placing Concrete in Water Concrete deposited in water shall be Class Seal concrete with a minimum cement content of 380 kg/m³ of concrete. The slump of the concrete shall be maintained between 4 and 8 cm, whichever is called for in the Bill of Quantities. To prevent segregation, concrete shall be carefully placed in a compact mass, in its final position, by means of a tremie, a bottom-dump bucket, or other approved means, and shall not be disturbed after being placed. A tremie shall consist of a tube having a diameter of not less than 250 mm constructed in sections having flanged couplings fitted with gaskets with a hopper at the top. The tremie shall be supported so as to permit free movement of the discharge and over the entire top surface of the work and so as to permit rapid lowering when necessary to retard or stop the flow of concrete. The discharge end shall be closed at the start of work so as to prevent water entering the tube and shall be completely submerged in concrete at all times. The tremie tube shall be kept full to the bottom of the hopper. When a batch is dumped into the hopper, the flow of concrete shall be induced by lightly raising the discharge end, but always keeping it in the placed concrete. The flow shall be continuous until the work is completed. When the concrete is placed with a bottom-dump bucket, the top of the bucket shall be open. The bottom doors shall open freely downward and outward when tripped. The buckets shall be completely filled and slowly lowered to avoid backwash. It shall not be dumped until it rests on the surface upon which the concrete is to be deposited and when discharged shall be withdrawn slowly until well above the concrete. #### 11. Consolidation of Concrete The consolidation method should be compatible with the concrete mixture, placing conditions, and degree of air removal desired. When concrete comes down the chute and flows into forms it carries entrapped air. The entrapped air shall be removed to prevent voids in concrete. Poorly consolidated concrete will be weak, porous and poorly bonded to the reinforcement. Poured concrete shall be immediately and thoroughly consolidated. The concrete in walls, beams, columns and the like shall be placed in horizontal layers not more than 30 cm thick except as hereinafter provided. When less than a complete layer is placed in one operation, it shall be terminated in a vertical bulkhead. Each layer shall be placed and consolidated before the preceding layer has taken initial set to prevent injury to the green concrete and avoid surfaces of separation between the layers. Each layer shall be consolidated so as to avoid the formation of a construction joint with a preceding layer. The consolidation shall be done by mechanical vibration. The concrete shall be vibrated internally unless special authorization of other methods is given or is provided herein. The intensity of vibration shall be such as to visibly affect a mass of concrete with a 3 cm slump over a radius of at least 50 cm. A sufficient number of vibrator shall be provided to properly consolidate each batch immediately after it is placed in the forms. Vibrators shall be manipulated so as to thoroughly work the concrete around the reinforcement and embedded fixtures and into the corners and angles of the forms and shall be applied at the point of placing and in the area of freely placed concrete. The vibrators shall be inserted into and withdrawn from the concrete slowly. The diameter of the steel tube called poker depends on the spacing between the reinforcing bars in the form-work. In no case shall the vibrator be operated longer than 15 s in any one location. The vibration shall be of sufficient duration and intensity to consolidate the concrete thoroughly but shall not be continued so as to cause segregation and at any one point to the extent that localized areas of grout are formed. Application of vibrators shall be at points uniformly spaced, and not farther apart than twice the radius over which the vibration is visibly effective. Vibration shall not be applied directly or thru the reinforcement to sections or layers of concrete that have hardened to the degree that the concrete ceases to be plastic under vibration. It shall not be used to make concrete flow in the forms over distances so great as to cause segregation, and vibrators shall not be used to transport concrete in the forms of troughs or chutes. # 12. Concrete Surface Finishing: General #### a. Float Finish Surface shall be consolidated with power-driven floats or by hand floating. Surfaces shall be left uniform, smooth and granular texture. Float finish shall be applied to the surfaces indicated, to surfaces to receive trowel finish, and to floor and slab surfaces to be covered with fluid-applied or sheet waterproofing, built-up or membrane roofing, or sand-bed terrazzo. # b. Trowel Finish After applying float finish, trowel shall be applied first then concrete shall be consolidated by hand or power –driven trowel. Continue troweling passes and restraigthen until surface is free of trowel marks and uniform in texture and appearance. Grind smooth any surface defects that would telegraph through applied coating or floor coverings. #### c. Concrete Rubbed Finish After removal of forms, the rubbing of concrete shall be started as soon as its condition will permit. Allow the concrete to cure before the final rubbing with a fine carborundum stone and water. The concrete shall be kept damp while rubbing. This rubbing shall be continued until the entire surface is of smooth texture and uniform color. After the final rubbing is completed and the surface has dried, it should be rubbed with burlap to remove loose powder and shall be left free from all unsound patches, paste, powder and objectionable marks. Surface coating of cementitious material which adds thickness to the original surface is not acceptable. # 13. Curing Concrete #### 13.1 All newly placed concrete shall be cured in accordance with this Specification, unless otherwise directed by the Engineer. The curing method shall be one or more of the following: #### a. Water Method The concrete shall be kept continuously wet by the application of water for a minimum period of 7 days after the concrete has been placed. The entire surface of the concrete shall be kept damp by applying water with an atomizing nozzle. Cotton mats, rugs, carpets, or earth or sand blankets may be used to retain the moisture. At the expiration of the curing period the concrete surface shall be cleared of the curing medium. # b. Curing Compound Surfaces exposed to the air may be cured by the application of an impervious membrane if approved by the Engineer. The membrane forming compound used shall be practically colorless liquid. The use of any membrane-forming compound that will alter the natural color of the concrete or impart a slippery surface to any wearing surface shall be prohibited. The compound shall be applied with a pressure spray in such a manner as to cover the entire concrete surface with a uniform film and shall be of such character that it will
harden within 30 min after application. The amount of compound applied shall be ample to seal the surface of the concrete thoroughly. Power-operated spraying equipment shall be equipped with an operational pressure gauge and means of controlling the pressure. The curing compound shall be applied to the concrete following the surface finishing operation immediately after the moisture sheen begins to disappear from the surface, but before any drying shrinkage or craze cracks begin to appear. In the event of any delay, in the application of the curing compound, which results in any drying or cracking of the surface, application of water with an atomizing nozzle as specified under "Water Method", shall be started immediately and shall be continued until the application of the compound is resumed or started, however, the compound shall not be applied over any resulting free-standing water. Should the film of compound be damaged from any cause before the expiration of 7 days after the concrete is placed in the case of structures, the damaged portion shall be repaired immediately with additional compound. Curing compound shall not be diluted or altered in any manner after manufacture. At the time of use, the compound shall be in a thoroughly mixed condition. If the compound has not been used within 120 days after the date of manufacture, the Engineer may require additional testing before the use to determine compliance to requirements. An anti-setting agent or a combination of anti-setting agents shall be incorporated in the curing compound to prevent caking. The curing compound shall be packaged in clean barrels or steel containers or shall be supplied from a suitable storage tank located on the site. Storage tank shall have a permanent system designed to completely redisperse any settled material without introducing air or any other foreign substance. Containers shall be well-sealed with ring seals and lug type crimp lids. The linings of the containers shall be of a character that will resist the solvent of the curing compound. Each container shall be labeled with a manufacturer's name, specification number, batch number, capacity and date of manufacture, and shall have label warning concerning flammability. The label shall also warn that the curing compound shall be well-stirred before use. When the curing compound is shipped in tanks or tank trunks, a shipping invoice and Material Safety Data Sheet (MSDS) shall accompany each load. The invoice and MSDS shall contain the same information as that required herein for container labels. Curing compound may be sampled by the Engineer at the source of supply and/or on the site. # c. Waterproof Membrane Method The exposed finished surfaces of concrete shall be sprayed with water, using a nozzle that so atomizes the flow that a mist and not a spray is formed until the concrete has set, after which a curing membrane of waterproof paper or plastic sheeting shall be placed. The curing membrane shall remain in place for a period of not less than 72 h. Waterproof paper and plastic sheeting shall conform to the specification of AASHTO M 171, Standard Specification for Sheet Materials for Curing Concrete. The waterproof paper or plastic sheeting shall be formed into sheets of such width as to cover completely the entire concrete surface. All joints in the sheets shall be securely fastened together in such a manner as to provide a waterproof joint. The joint seams shall have a minimum lap of 100 mm. The sheets shall be securely weighed down by placing a bank of earth materials on the edges of the sheets or by other means satisfactory to the Engineer. Should any portion of the sheets be broken or damaged within 72 hours after being placed, the broken or damaged portions shall be immediately repaired with new sheets properly fastened in place. Sections of membrane which have lost their waterproof qualities or have been damaged to such an extent as to render them unfit for curing the concrete shall not be used. #### d. Forms-in-Place Method Formed surfaces of concrete may be cured by retaining the form-in-place. The forms shall remain in place for a minimum period of 7 days after the concrete has been placed, except that for members over 50 cm in least dimensions, the forms shall remain in place for a minimum period of 5 days. Wooden forms shall be kept wet by watering during the curing period. # e. Steam Curing Method Steam curing for pre-cast members shall conform to the following provisions: After placement of the concrete, members shall be held for a minimum 4h pre-steaming period. To prevent moisture loss on exposed surfaces during the pre-steaming period, members shall be covered immediately after casting or the exposed surface shall be kept wet by fog spray or wet blankets. Enclosures for steam curing shall allow free circulation of steam about the member and shall be constructed to contain the live steam with a minimum moisture loss. The use of tarpaulins or similar flexible covers will be permitted, provided they are kept in good condition and secured in such a manner to prevent the loss of steam and moisture. Steam at jets shall be low pressure and in a saturated condition. Steam jets shall not impinge directly on the concrete, test cylinders, or forms. During application of the steam, the temperature rise within the enclosure shall not exceed 20°C per hour. The curing temperature throughout the enclosure shall not exceed 65°C and shall be maintained at a constant level for a sufficient time necessary to develop the required compressive strength. Control cylinders shall be covered to prevent moisture loss and shall be placed in a location where temperature of the enclosure will be the same as that of the concrete. Temperature recording devices that will provide an accurate continuous permanent record of the curing temperature shall be provided. A minimum of one (1) temperature recording device per 50 m of continuous bed length will be required for checking temperature. Curing of pre-cast concrete will be considered completed after the termination of the steam curing cycle. # 13.2 The application for curing method shall be one or more of the following: # a. Curing Cast-In-Situ Concrete All newly placed concrete for cast-in-situ structures, shall either be cured by the water method, the forms-in-place method, or as permitted herein, by the curing compound method, all in accordance with the requirements of Curing Concrete. The curing compound method may be used on concrete surfaces which are to be buried under ground and surfaces where only Ordinary Surface Finish is to be applied and on which a uniform color is not required, and which will not be visible from public view. When deemed necessary by the Engineer during periods of hot weather, water shall be applied to concrete surface being cured by the curing compound method or by the forms-in-place method until the Engineer determine that a cooling effect is no longer required. # b. Curing Pre-Cast Concrete (except piles) Pre-cast concrete members shall be cured for not less than 7 days by the water method, Water Method or by steam curing, Steam Curing Method. # c. Curing Pre-cast Concrete Piles All newly placed concrete for pre-cast concrete piles, conventionally reinforced or prestressed shall be cured by the "Water Method" as described in Curing Concrete, except that the concrete shall be kept under moisture for at least 14 days. At the option of the Contractor, steam curing may be used in which case the steam curing provisions of Steam Curing Method shall apply except that the concrete shall be kept wet for at least 7 days including the holding and steaming period. #### 14. Acceptance of Concrete The strength of concrete shall be deemed acceptable if the average of three (3) consecutive strength test results is equal to or exceed the specified strength and no individual test result falls below the specified strength by more than 15%. Concrete deemed to be not acceptable using the above criteria may be rejected unless the Contractor can provide evidence, by means of core tests, that the quality of concrete represented by the failed test result is acceptable in place. Three (3) cores shall be obtained from the affected area and cured and tested in accordance with AASHTO T 24, Standard Method of Test for Obtaining and Testing Drilled Cores and Sawed Beams of Concrete (ASTM C42, Standard Test Method for Obtaining and Testing Drilled Cores and Sawed Beams of Concrete. Concrete in the area represented by the cores will be deemed acceptable if the average of cores is equal to or at least 85% and no sample core is less than 75% of the specified strength otherwise it shall be rejected. # ITEM 902 - Reinforcing Steel #### A. Description This Item shall consist of furnishing, cutting, bending, fabricating, welding, and placing of steel reinforcement with or without epoxy coating of the type, size, shape and grade required in accordance with this Specification and in conformity with the requirements shown on the Plans. # **B. Material Requirements** Reinforcing steel shall conform to the requirements of the following Specifications: Table 902.1 Reinforcing Steel Bars Requirements | Type of
Reinforcing
Steel | Specification | |---|--| | Deformed Billet Steel
Bars for Concrete
Reinforcement | AASHTO M 31M, Standard Specification for Deformed and Plain
Carbon and Low-Alloy Steel Bars for Concrete Reinforcement | | | ASTM A615M, Standard Specification for Deformed and Plain
Carbon-Steel Bars for Concrete Reinforcement | | | PNS 49, Philippine National Standard, Steel Bars for Concrete
Reinforcement -
Specification | | Deformed
Steel Wire for
Concrete
Reinforcement | AASHTO M 336M, Standard Specification for Steel Wire and
Welded Wire, Plain and Deformed, for Concrete Reinforcement
(ASTM A1064M, Standard Specification for
Carbon-Steel Wire and Welded Wire Reinforcement, Plain and
Deformed, for Concrete) | PEPD.QF.04 Page 29 of 38 | Welded Steel Wire
Fabric for Concrete
Reinforcement | ASTM A1064M Steel Wire and Welded Wire Reinforcement, Plain and Deformed, for Concrete | |--|--| | Cold-Drawn
Steel Wire for
Concrete
Reinforcement | AASHTO M 336M, Standard Specification for Steel Wire and Welded Wire, Plain and Deformed, for Concrete Reinforcement (ASTM A1064M, Standard Specification for Carbon-Steel Wire and Welded Wire Reinforcement, Plain and Deformed, for Concrete) | | Fabricated Steel Bar or Rod Mats for Concrete Reinforcement | AASHTO M 54M, Standard Specification for Welded Deformed
Steel Bar Mats for Concrete Reinforcement (ASTM A184M,
Standard Specification for Welded Deformed Steel Bar Mats for
Concrete Reinforcement) | | Welded
Deformed
Steel Wire | AASHTO M 336M, Standard Specification for Steel Wire and Welded Wire, Plain and Deformed, for Concrete Reinforcement (ASTM 1064M, Standard Specification for | | Fabric of
Concrete
Reinforcement | Carbon-Steel Wire and Welded Wire Reinforcement, Plain and Deformed, for Concrete) | | Plastic Coated Dowel
Bars | AASHTO M 254M, Standard Specification for CorrosionResistant Coated Dowel Bars Type A | | Low Alloy Steel Deformed Bars for Concrete Reinforcement | ASTM A706M, Standard Specification for Deformed and Plain
Low-Alloy Steel Bars for Concrete Reinforcement | | Deformed Rail - Steel and Plain Bars for Concrete Reinforcement | ASTM A996M, Standard Specification for Rail-Steel and AxleSteel Deformed Bars for Concrete Reinforcement | If reinforcing bars are to be welded, these ASTM specifications shall be supplemented by requirements assuring satisfactory weldability. Dowel and tie bars shall conform to the requirements of AASHTO M 31 (ASTM A615)/PNS 49 except that rail steel shall not be used for tie bars that are to be bent and restraightened during construction. Tie bars shall be deformed bars. Dowel bars shall be plain round bars. They shall be free from burring or other deformation restricting slippage in the concrete. Before delivery to the site of the work, a minimum of 1/2 the length of each dowel bar shall be painted with one coat of approved lead or tar paint. The sleeves for dowel bars shall be metal of an approved design to cover 50 mm, plus or minus 6.3 mm of the dowel, with a closed end, and with a suitable stop to hold the end of the sleeve at least 25 mm from the end of the dowel bar. Sleeves shall be of such design that they do not collapse during construction. Plastic coated dowel bar conforming to AASHTO M 254M may be used. PEPD,QF,04 Page 30 of 38 # C. Construction Requirements #### 1. Order Lists Before materials are ordered, all order lists and bending diagrams shall be furnished by the Contractor, for approval of the Engineer. The approval of order lists and bending diagrams by the Engineer shall in no way relieve the Contractor of responsibility for the correctness of such lists and diagrams. Any expense incident to the revisions of materials furnished in accordance with such lists and diagrams to make them comply with the Plans shall be borne by the Contractor. #### 2. Protection of Material #### a. Steel Reinforcement Steel reinforcement shall be stored above the surface of the ground upon platforms, skids, or other supports and shall be protected as far as practicable from mechanical injury and surface deterioration caused by exposure to conditions producing rust. When placed in the work, reinforcement shall be free from dirt, detrimental rust, loose scale, paint, grease, oil, or other foreign materials. Reinforcement shall be free from injurious defects such as cracks and laminations. Rust, surface seams, surface irregularities or mill scale will not be cause for rejection, provided the minimum dimensions, cross sectional area and tensile properties of a hand wire brushed specimen meets the physical requirements for the size and grade of steel specified. # b. Epoxy-Coated Reinforcing Steel Bars Epoxy coated steel stored at the site shall be placed on timber sills suitably spaced so that no steel shall be laid upon or come in contact with the ground and elevated sufficiently to prevent sags in the bundles and from workers waiking on the steel. If rainy or exceptionally humid weather occurs or is anticipated, bars shall be stored under cover immediately upon delivery to site. Epoxy bars shall be covered with polyethylene or other materials to prevent exposure to direct sunlight. Reinforcement steel bars shall be handled and stored in manner to prevent damage to bars or the epoxy coating. Coated reinforcing steel bars, whether individual bars or bundles of bars or both, shall be covered with opaque polyethylene sheeting or other suitable opaque protective material. For stacked bundles, the protective covering shall be draped around the perimeter of the stack. The covering shall be secured adequately, and allow for air circulation around the bars to minimize condensation under the covering. All systems for handling the epoxy coated bars shall have padded contact areas to eliminate damage. All bundling bands shall be padded or suitable banding shall be used to prevent damage to the coating. All bundles of coated reinforcing steel bars shall be lifted with a strong back, spreader bar, multiple supports, or a platform bridge to prevent bar to bar abrasion from sags in the bundles of coated reinforcing steel bars. # 3. Bending All reinforcing bars requiring bending shall be cold-bent to the shapes shown on the Plans. Bars shall be bent around a circular pin having the following diameters (D) in relation to the nominal diameter of the bar (d) as shown in Table 902.5. Table 902.5 Pin Diameter for Bending Bars | Nominal Diameter (d), mm | Pin diameter (D) | |--------------------------|------------------| | 10 to 20 | 6d | | 25 to 28 | 8d | | 32 and greater | 10d | Bends and hooks in stirrups or ties may be bent to the diameter of the principal bar enclosed therein. #### 4. Placing and Fastening All steel reinforcement shall be accurately placed in the position shown on the Plans and firmly held there during the placing and setting of the concrete. Bars shall be tied at all intersections except where spacing is less than 300 mm in each direction, in which case, alternate intersections shall be tied. Ties shall be fastened on the inside. Distance from the forms shall be maintained by means of stays, blocks, ties, hangers, or other approved supports, so that it does not vary from the position indicated on the Plans by more than 6 mm. Blocks for holding reinforcement from contact with the forms shall be precast mortar blocks of approved shapes and dimensions. Layers of bars shall be separated by precast mortar blocks or by other equally suitable devices. The use of pebbles, pieces of broken stone or brick, metal pipe and wooden blocks shall not be permitted. Unless otherwise shown on the Plans or as required by the Engineer, the minimum distance between bars shall be 40 mm. Reinforcement in any member shall be placed and then inspected and approved by the Engineer before the placing of concrete begins. Concrete reinforcement placed in violation of this provision shall be rejected and removal shall be required unless otherwise structural integrity of the structure was proved adequate by the Contractor in writing and approved by the Engineer. If fabric reinforcement is shipped in rolls, it shall be straightened before being placed. Bundled bars shall be tied together at not more than 1.80 m intervals. #### 5. Splicing All reinforcement shall be furnished in the full lengths indicated on the Plans. Splicing of bars, except where shown on the Plans, will not be permitted without the written approval of the Engineer. Splices shall be staggered as far as possible and with a minimum separation of not less than 40 bar diameters. Bars shall be lapped in accordance to Table 902.6. Table 902.6 Bars Minimum Lap Distance | Splice Type | Grade 280
(40) | Grade 420
(60) | But not less
than | |-------------|-------------------|-------------------|----------------------| | Tension | 24 bar dia. | 36 bar dia. | 300 mm | | Compression | 20 bar dia. | 24 bar dia. | 300 mm | In lapped splices, the bars shall be placed in contact and wired together. Lapped splices will not be permitted at locations where the concrete section is insufficient to provide minimum clear distance of 1 1/3 the maximum size of coarse aggregate between the splice and the nearest adjacent bar. Welding of reinforcing steel shall be done only if detailed on the Plans. Spiral reinforcement shall be spliced by lapping at least 1 ½ turns or by butt welding unless otherwise shown on the Plans. Splicing shall conform to the following requirements unless otherwise shown on the Plans. Lap splices shall not be permitted for bars larger than 36 mm Ø. For contact lap splices, minimum clear spacing between the contact lap splice and adjacent splices or bars shall be in accordance with the requirements below. For parallel non-prestresed reinforcement in a horizontal layer, clear spacing shall be at least the greatest of 50 mm, nominal diameter of bar(d_b) and (4/3) nominal maximum size of coarse aggregates (d_{agg}). For non-contact splices in flexural members, the transverse center-tocenter spacing of spliced bars shall
not exceed the lesser of one-fifth the required lap splice length and 150 mm. Lap splices of bundled bars shall be in accordance with the requirements below. Lap splices of bars in the bundle shall be based on the lap splice length required for the individual bars within the bundle. Individual bar splices within a bundle shall not overlap. Entire bundles shall not be lap spliced. # 6. Lapping of Bar Mat Sheets of mesh or bar mat reinforcement shall overlap each other sufficiently to maintain a uniform strength and shall be securely fastened at the ends and edges. The overlap shall not be less than one (1) mesh in width. # 7. Welding Welding of reinforcing steel bars shall conform to American Welding Society, AWS D1.4M, Structural Welding Code - Reinforcing Steel. For steel bars conforming to ASTM A706M, Standard Specification for Deformed and Plain Low-Alloy Steel Bars for Concrete Reinforcement the bars can be welded without preheating. Steel bars conforming to ASTM A615M, Standard Specification for Deformed and Plain Carbon-Steel Bars for Concrete Reinforcement shall be preheated to 260°C. After completion of welding on epoxy-coated bars, the damaged areas shall be repaired using patch materials conforming to ASTM A47M, Standard Specification for Ferritic Malleable iron Castings. #### ITEM 903 - Formworks and Falseworks # A. Description This Item covers the furnishing, fabrication, installation, erection, and removal of forms and falseworks for cast-in-place concrete. #### **B.** Material Requirements Forms shall be constructed with metal or timber. For timber forms, it is important that the moisture content of the timber that will be used to make the formwork in between 15% to 20%. Low moisture content means the timber is very dry thus it can absorb moisture from the wet concrete resulting to swelling and bulging of timber and weak hardened concrete. Use of tough resin as wood coating is the treatment used to overcome the moisture problem in timber formworks though painting the wood with varnish is an alternative cheaper treatment. Forms for surfaces which will be exposed to view when construction is completed shall be prefabricated plywood panel forms, job-built plywood forms, or forms that are lined with plywood or fiber board. For metal forms, it is important that the metal used as sheating should be free from rust and nonreactive to concrete or concrete containing calcium oxide. Plywood or lined forms will not be required for surfaces which are normally submerged or not ordinarily exposed to view. Other types of forms, such as steel or unlined wooden forms, may be used for surfaces which are not restricted to plywood or lined forms, and may be used as backing for form linings. Forms are required above all extended footings. # **C. Construction Requirements** #### 1. General Forms shall be furnished, fabricated, installed, erected, and removed as specified herein and shall be of a type, size, shape, quality and strength to produce hardened concrete having the shape, lines and dimensions indicated on the drawings. The forms shall be true to line and grade in accordance with the tolerances as specified for cast-in-place concrete and shall be mortar tight and sufficiently rigid to resist deflection during concrete placement. The surfaces of forms shall be smooth and free from irregularities, dents, sags, and holes that would deface the finished surfaces. The minimum thickness used for metal forms shall be 2.5 mm or 3 mm thick or of such thickness that the forms remain true to shape. For timber formworks plywood is used for sheating with a minimum thickness of 18 mm to 25 mm though the thickness of the plywood to be used will depend on the pressure that the wet concrete will put on the formwork. The design of formwork will specify the thickness of the plywood that will be incorporated in the project. All tie bars with bolts used in fastening forms should be countersunk to a depth similar to the required concrete covering and patched with cement mortar. The use of approved internal steel ties or steel or plastic spacers shall be permitted. The fabricated spacer blocks shall have an embedded No. 16 G.I. Tie Wire with sufficient length to be attached to the reinforcing steel bars to hold the spacers in place after closure of forms and during pouring. Structural steel tubes used as support for forms shall have a minimum wall thickness of 4 mm. The design and construction of the formworks and falseworks shall be the responsibility of the Contractor and for approval of the Engineer. The Contractor shall employ competent professional engineering services to design forms to be approved by the Engineer and supervise the erection of all formworks needed for the completion of the project. All materials to be incorporated to the site shall be inspected and approved by the Engineer. ## 2. Fabrication and Erection Formworks to be used shall conform to ACI 347 - Guide to Formwork for Concrete. Forms shall be substantial and sufficiently tight to prevent leakage of mortar. Forms shall be braced or tied to maintain the desired position, shape, and alignment during and after concrete placement. Walers, studs, internal ties, and other form supports shall be sized and spaced so that proper working stresses are not exceeded. Joints in forms shall be bolted tightly and shall bear on solid construction. Forms shall be constructed so they can be removed without hammering, wedging, or prying against the concrete. Form ties shall be approved by the Engineer and shall be of the snap cone or she-bolt with cone type. The spacing of form ties shall be designed to withstand concrete pressures without bulging, spreading, or lifting of the forms. The forms shall produce finished surfaces that are free from off-sets, ridges, waves, and concave or convex areas. Forms to be reused shall be thoroughly cleaned and repaired. Split, frayed, delaminated, or otherwise damaged forms shall not be used. All form panels shall be placed in a neat, symmetrical pattern with level and continuous horizontal joints. The Contractor shall place special attention on mating forms to previously placed walls so as to minimize steps or rough transitions. Form panels shall be of the largest practical size to minimize joints and to improve rigidity which is to be designed by the formworks engineer of the Contractor. For engineered wood, available panels sizes of 1.20 m x 2.70 m and 3.00 m x 2.40 m can be ordered. Beams and slabs supported by concrete columns shall be formed in a way that the column forms can be removed without disturbing the supports of the beams or slabs. Wherever the top of a wall will be exposed to weathering, the forms on at least one side shall not extend above the top of the wall and shall be brought to true line and grade. At other locations, forms for concrete which is to be finished to a specified elevation, slope, or contour, shall be brought to a true line and grade, or a wooden guide strip shall be provided at the proper location on the forms so that the top surface can be finished with a screed or template. At horizontal construction joints in walls, the forms on one side shall not extend more than 7 m above the joints. When necessary, temporary openings shall be provided at the bottom of column and wall forms and at other points in order to facilitate cleaning and inspection prior to concrete placement. Unless otherwise shown on the drawings, all salient corners and edges of beams, columns, walls, slabs, and curbs shall be provided with a 25 mm x 25 mm chamfer formed by a wood or metal chamfer strip. Forms for exposed surfaces and all steel forms shall be coated with nonstaining form release agent which shall be applied just prior to placement of steel reinforcement. After coating with industrial lubricants such as form oil, any surplus form release coating on the form surface shall be removed. Wood forms for unexposed surfaces may be thoroughly wetted with water in lieu of coating with industrial lubricant immediately before concrete placement, except in freezing weather form release coating shall be used. Should misalignment of forms or screeds, excessive deflection of forms, or displacement of reinforcement occur during concrete placement, immediate corrective measure shall be taken to ensure acceptable lines and surface to required dimensions and cross sections. If any forms bulge or show excessive deflection, in the opinion of the Engineer, the concrete shall be removed and the forms shall be rebuilt and strengthened. #### a. Foundations for Formwork Proper foundations on ground, such as mudsilis, spread footings, or pile footings should be provided. If soil under mudsilis is or may become incapable of supporting superimposed loads without appreciable settlement, it should be stabilized or other means of support should be provided. #### 3. Safety Forms must be strong and sound (made of good quality and durable materials) in order to carry the full load and side pressure from freshly placed concrete. To ensure that forms are safe, correctly designed and strong enough for the expected load, Occupational Safety and Health Administration (OSHA) regulations under Section 1926.703 Safety and Health Regulations for Construction, American Concrete Institute 347 (ACI 347) — Guide to Formwork recommendations under Section 3.1 Safety Precautions in Construction and Section 3.2 Construction Practices and Workmanship, and local code requirements for formwork should be followed. # 4. Delivery, Storage, Maintenance and Handling Any formwork with steel components should be stored in a dry place. Avoid direct sunlight on timber forms. Store form materials and accessories above ground with a minimum height of 100 mm on framework or blocking without twist or bend, and shall be covered with a suitable waterproof of covering providing adequate air circulation and free from dirt. Store and handle form coating to prevent contamination in accordance with
manufacturer's recommendation. For maintenance of the forms, use stiff brush and clean water for the cleaning of forms. Use scrapers only as a last resort for maintenance purposes. Keep forms well-oiled to prevent delamination of plywood or rusting of steel and always oil the edges. #### 5. Removal of Forms Forms, falseworks and centering shall not be removed or disturbed until the concrete has attained sufficient strength to safely support all dead and live loads, or until the concrete has attained the minimum percentage of specified design strength listed in the Table below. Shoring beneath beams or slabs shall be left in place and reinforced as necessary to carry any construction equipment or materials placed thereon. No forms shall be removed without the approval of the Engineer. In general and under normal conditions, the Engineer will approve removal of forms after the following time has elapsed: | Description of Structural
Member | Period of time
(days) | Minimum % of
Design Strength | |---|--------------------------|---------------------------------| | Walls, column and vertical sides of beams | 1 to 2 | 70% | | Beam soffits (steel formwork props/shoring left under) | 7 | 80% | | Soffits of slabs (steel formwork props/shoring left under) | 7 | 70% | | Removal of steel formwork props/shoring to slabs: Soffits of slabs, for slabs spanning up to 4.5 m | 7 | 70% | | Removal of steel formwork props/shoring to slabs: Soffits of slabs, for slabs spanning over 4.5 m | 14 | 70% | | Removal of steel formwork props/shoring to beams and arches: Centering under girders, beam frames and arches spanning up to 6.0 m | 14 | 80% | | Removal of steel formwork props/shoring to beams and arches: | 21 | 80% | |---|----|-----| | Centering under girders,
beam frames and arches
spanning over 6.0 m | | | Order and method of removing formwork: Shuttering forming the vertical faces of walls, beams and columns sides shall be removed first as they bear no load but only retain the concrete. Shuttering forming soffit of slabs shall be removed next. Shuttering forming soffit of beams, girders or other heavily loaded shuttering shall be removed in the end. Care shall be taken into consideration during form removal to avoid surface gouging, corner or edge breakage, or other damage to the concrete. Immediately after form removal, any damaged or imperfect work shall be repaired as specified by the Engineer. # a. Removal of Forms for Special Structures In continuous structures, support should not be released in any span until the first and second adjoining spans on each side have reached the specified strength. For prestressed concrete construction, pre-tensioning and posttensioning of strands, cables or rods can be done with or without side forms of the member in place. Bottom forms and supporting shores or falsework should remain in place until the member is capable of supporting its dead load and anticipated construction loads, as well as any formwork carried by the member. Side forms that remain in place during the transfer of pre-stressing force should be designed to allow for vertical and horizontal movements of the cast member during the prestressing operation. In all cases, the deflections of members due to pre-stressing force and the elastic deformation of forms or falsework should be considered in the design and removal of the forms. For reasons of safety, when using post-tensioned, cast-in-place elevated slabs, the Contractor should be careful to ensure that supporting shores do not fall out due to lifting of the slab during tensioning. For large structures where the dead load of the member remains on the formwork during pre-stressing, displacement of the dead load toward end supports should be considered in the design of the forms and shoring, including sills or other foundation support. For concrete structures with direct or indirect contact with sea water, sea water or brackish water shall not come in direct contact with concrete prior to the age in days indicated in the Table shown below. | Requirements for the Removal of Formwork for Concrete in Contact with Sea Water or Brackish Water | | | |---|--|--| | Water Salinity (ppm dissolved salts) (parts per million or mg/L of dissolved salts) | Days to Elapse prior to Salt Water
Contact (days) | | | 0 to 10,000 | Normal Curing | | | 10,000 to 20,000 | 15 | | | 20,000 to 30,000 | 25 | | | Over 30,000 | 30 | | PEPD OF 04 Page 37 of 38 # 6. Quality Control and Inspection Materials and components used for formworks shall be examined for damage or excessive deterioration before use. Reuse of forms shall be allowed only if found suitable after necessary repairs. In case of timber forms, the inspection shall not only cover physical damages but also signs of attacks by decay, rot or insect attack or the development of splits. Reuse of job-built forms shall be permitted only when specifically approved by the Engineer. The Engineer shall inspect the completed formwork, before carrying out any work, including fixing of reinforcing support. Prepared By: DOMINGO P. SANCHEZ Civil Estimator Checked by: Engr. NOEL F. YAMBAQ Officer-in-Charge, PMD Noted Engr. JEOFFREY V. MACALALAD Manager , PEPD